Table of Contents

PT-Series Camera Installation

1.1 References ...4
1.2 Camera Overview ..5
1.3 Installation Overview ...5
 1.3.1 Camera Connection Options ..5
 1.3.2 Supplied Components ..6
 1.3.3 Required Components ..6
1.4 Location Considerations ...6
 1.4.1 Bench Testing ..6
 1.4.2 Prior to Cutting/Drilling Holes ...7
1.5 Camera Mounting ..7
 1.5.1 Galvanic Isolation ...7
 1.5.2 Earth Ground Connection ..7
 1.5.3 Installation of PT-Series Camera and Galvanic Isolation Kit9
1.6 Camera Connections ..10
 1.6.1 Removing the Back Cover ..10
 1.6.2 Cable Gland Sealing ...10
 1.6.3 Cable Glands and Spare Parts Kit ..11
 1.6.4 Cable Gland Seal Inserts ..11
 1.6.5 Connecting power ..11
 1.6.6 Video Connections ...12
 1.6.7 Ethernet Connection ...12
 1.6.8 Serial Connection ...12
1.7 Serial Communications Overview ..14
1.8 Serial Communications Settings - Hardware DIP Switches ...14
1.9 PT-Series Camera Specifications ..17

Basic Operation and Configuration

2.1 IP Camera, ONVIF Profile S Compliant ..19
 2.1.1 Serial and/or IP Communications ..19
 2.1.2 Server Configuration ..19
2.2 Camera Bench Test ...19
 2.2.1 Set IP Address using the FLIR Discovery Network Assistant (DNA)20
 2.2.2 Log into the Camera Web Page ..21
 2.2.3 Live Video Page ..22
2.3 Camera Configuration ..25
 2.3.1 Expert and Admin Accounts ...25
 2.3.2 Setup Menu ...26
 2.3.3 Maintenance Menus ...29
2.4 Thermal Imaging Overview ..42
2.5 Troubleshooting Tips ..43
2.6 Restoring the Factory Settings ...46

Serial Address: Decimal To Binary Conversion
PT-Series Camera Installation

This manual describes the installation of the PT-Series cameras. If you need help during the installation process, please call to speak with our support experts. All installers and integrators are encouraged to take advantage of the training offered by FLIR; visit https://www.flir.com/support-center/training/ for more information.

This manual includes the following topics:

• Installation Overview
• Mounting the camera and its components
• Connecting the electronics
• Bench testing the camera
• Basic configuration and operation of the camera
• Camera Specifications

For safety, and to achieve the highest levels of performance from the PT-Series camera system, always follow the warnings and cautions in this manual when handling and operating the camera system.

Warning!

If mounting the PT-Series camera on a pole, tower or any elevated location, use industry standard safe practices to avoid injuries.

Caution!

Except as described in this manual, do not open the PT-Series camera for any reason. Disassembly of the camera can cause permanent damage and will void the warranty.

Be careful not to leave fingerprints on the PT-Series camera’s infrared optics.

The PT-Series camera requires a power supply of 24 Volts. Operating the camera outside of this input voltage range or the specified operating temperature range can cause permanent damage.

1.1 References

PT-Series Camera Mechanical Interface Control Document (ICD) (FLIR Doc # 427-0032-00-19)—available from the FLIR website, provides further details regarding mechanical dimensions and mounting for the PT-Series camera.
1.2 Camera Overview

The PT-Series camera is both an analog and an Internet Protocol (IP) camera. The video from the camera can be viewed over a traditional analog video network or it can be viewed by streaming it over an IP network using MPEG-4, M-JPEG and H.264 encoding. Analog video will require a connection to a video monitor or an analog matrix/switch. The IP video will require a connection to an Ethernet network switch and a computer with the appropriate software for viewing the video stream or a network video recorder.

1.3 Installation Overview

The PT-Series Camera is a multi-sensor camera system on a pan/tilt platform. Combinations of an infrared camera and a visible-light video camera are intended for outdoor installations.

The PT-Series camera is intended to be mounted on a medium-duty fixed pedestal mount or wall mount commonly used in the CCTV industry. Cables will exit from the back of the camera housing. The mount must support up to 45 lbs. (20 KG). The camera can be controlled through either serial or IP communications. The camera operates on 21 - 30 Vac or 21 - 30 Vdc. In order to access the electrical connections and install the cables, it is necessary to temporarily remove the back cover of the camera housing.

1.3.1 Camera Connection Options

Camera connections are made through water-tight cable gland seals on the rear of the camera. Refer to Cable Gland Sealing, pg. 10 to ensure the glands are used correctly and the connections are properly sealed.

The camera can be powered with a conventional power supply, using 21 - 30 Vac or 21 - 30 Vdc. The PT-Series Camera can produce analog or digital video output (or both). Analog video will require at least one connection to a video monitor or an analog video matrix switch. In most analog installations, two video connections will be used—one for the thermal camera video, and one for the daylight camera video. The camera provides two BNC connectors for these video channels.

An Ethernet connection is provided for IP video streaming and for command and control communications (pan/tilt/zoom/etc.). A web browser can be used for IP video streaming, command and control, and camera configuration and maintenance (software/firmware updates).
For analog installations that are not using Ethernet/IP, a serial cable (RS232 or RS422) can optionally be connected and used for command and control communications, supporting either Pelco D or Bosch protocols. In installations using analog video and serial communications, it is recommended an Ethernet cable should also be installed for camera configuration, operation, and troubleshooting.

For installations where the camera is mounted on a tower or pole or other location that may be difficult to access, it is recommended that the Ethernet connection be installed from the camera down to ground level at a minimum, to allow access.

1.3.2 Supplied Components

The PT-Series camera includes these standard components:

- Multi-sensor Pan/Tilt Camera Unit
- Galvanic Isolation Kit (PN 4204960)
- Cable Glands and Spare Parts kit

1.3.3 Required Components

The installer will need to supply the following items; the lengths are specific to the installation.

- Electrical wire, for system power; up to 100’ (3-conductor, shielded, gauge determined by cable length and supply voltage. See PT-Series Camera Connections, pg. 13 for additional information)
- Camera grounding strap
- Coaxial RG59U video cables (BNC connector at the camera end) for analog video
- Shielded Category 6 Ethernet cable for control, streaming video, and for software updates.
- Optional serial cable for serial communications.
- Miscellaneous electrical hardware, camera mount (with stainless steel washers and bolts), connectors, and tools

1.4 Location Considerations

Install the camera in a location that will allow access for regular periodic cleaning (fresh water rinse), inspection of mounting integrity and mechanical soundness, and preventative maintenance. Ensure the camera and the camera mount are routinely inspected on a periodic basis.

The camera will require connections for power, communications (IP Ethernet, serial), and video (analog, IP digital).

- Install all cameras with an easily accessible Ethernet connection to support future software updates.
- Ensure that cable distances do not exceed the specifications and that cables adhere to all local and Industry Standards, Codes, and Best Practices.

1.4.1 Bench Testing

Connect the power, analog video, serial, and Ethernet connections and confirm that the video is displayed on a monitor when the power is turned on. Confirm the camera can be controlled by moving it (pan/tilt). For configuration and basic setup information using the onboard web server, refer to Basic Operation and Configuration, pg. 19.
1.4.2 Prior to Cutting/Drilling Holes

When selecting a mounting location for the PT-Series camera, consider cable lengths and cable routing. Ensure the cables are long enough given the proposed mounting locations and cable routing requirements.

Use cables that have sufficient dimensions to ensure safety (for power cables) and adequate signal strength (for video and communications).

1.5 Camera Mounting

Caution!

Always use stainless steel washers on the four camera base mounting holes, especially in locations where the camera base is exposed to a damp or salt environment. Ensure that the camera base is electrically isolated and properly grounded when it is secured to its mount. Contact between the stainless steel fasteners and any bare aluminum may cause galvanic corrosion which will shorten the life of the installation and may void the camera warranty. Following this procedure is critical to maintaining the warranty on your PT-Series product.

Galvanic isolation is critical in preventing corrosion. Proper installation of galvanic isolation pad and washers is important for long product life.

There are two critical steps related to proper galvanic isolation camera mounting:

• Installation of Galvanic Isolation Kit
• Proper grounding (bonding) to earth ground

1.5.1 Galvanic Isolation

The Galvanic Isolation Kit (FLIR PN 4204960) is for use with all PT-Series cameras (PT-3XX, PT-6XX, A310-PT, PT-602CZ). The isolation plate and nylon shoulder or flat washers provide electrical isolation between the stainless steel fasteners and the aluminum camera base, and electrically isolates the complete PT-Series camera from the customer mount.

Galvanic isolation is critical in preventing corrosion. Proper installation of galvanic isolation pad and washers is important for long product life. Refer to Installation of PT-Series Camera and Galvanic Isolation Kit, pg. 9 for specific instructions.

1.5.2 Earth Ground Connection

Earth ground connection is very important to protect PT-Series from surge induced failures and corrosion caused by stray current/ground loops. Attach ground wire (16AWG or larger) to ground lug on access panel. Use the large hex nut to secure ground wire to stud on access panel. Ground stud is #8-32 thread.
Caution!

When lifting the PT-Series camera use the camera body and base, not the tubes.

PT-Series cameras must be mounted upright on top of the mounting surface, with the base below the camera. The unit should not be hung upside down.

Not to scale
All dimensions in inches

![Figure 1-2: PT-Series Camera Mounting](image)

Once the mounting location has been selected, verify both sides of the mounting surface are accessible.

Use a thread locking compound such as Loctite 242 or equivalent with all metal to metal threaded connections.

Once the holes are drilled in the mounting surface, install four (4) stainless steel 5/16 or M8 bolts with stainless steel washers and lock washers through the base of the camera.
1.5.3 Installation of PT-Series Camera and Galvanic Isolation Kit

Important Safeguards and Warnings

- Installation and servicing should be done by qualified installation and service personnel only.
- Installation should be done according to all local and national electrical and mechanical codes, using only approved materials.
- Use stainless steel hardware to fasten mounts to outdoor surfaces.
- To prevent damage from water leakage when installing outdoors, apply sealant around the bolt holes between the mount and the mounting surface.

Caution!

Following this procedure is critical to maintaining the warranty on your PT-Series product. Failure to follow these instructions can potentially void the camera warranty.

Table 1-1: Kit Contents

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation plate</td>
<td>1</td>
</tr>
<tr>
<td>M8 nylon flat washer</td>
<td>6</td>
</tr>
<tr>
<td>M8 nylon shoulder washer</td>
<td>6</td>
</tr>
<tr>
<td>M8 split washer, S.S.</td>
<td>6</td>
</tr>
<tr>
<td>M8 washer, S.S.</td>
<td>6</td>
</tr>
<tr>
<td>Tef-Gel TG .25, 3 cc syringe</td>
<td>optional</td>
</tr>
</tbody>
</table>

a. Use the alternate nylon flat washers and Tef-Gel lubricant on fasteners for PT-Series camera bases with mounting holes that are too small to accept the shoulder washers. A syringe of Tef-Gel may be supplied in the mounting kit when the nylon flat washer is expected to be required.

Step 1 Determine the correct positioning of the isolation plate (see PT-Series Galvanic Isolation Kit (4204960), pg. 10).

Step 2 Place the isolation plate and the camera on the mounting structure aligning the bolt holes or studs.

Step 3 Install nylon shoulder washers (4x) or alternate nylon flat washers (4x) onto camera base. If using nylon flat washers, apply a generous coat of Tef-Gel filling all gaps and voids.

Step 4 Secure the camera using 5/16” or M8 fasteners (4x) with stainless steel flat washers and split washers on top of the nylon washers.

Step 5 Ensure the camera is properly grounded. FLIR requires using a 14 AWG to 16 AWG grounding strap anchored to the ground lug on the back plate of the camera housing and then terminated to the nearest earth-grounding point.
1.6 Camera Connections

1.6.1 Removing the Back Cover

Use a 2.5mm hex key to loosen the four captive screws and remove the cover, exposing the connections at the back of the camera. There is a grounding wire connected between the case and the back cover.

1.6.2 Cable Gland Sealing

Proper installation of cable sealing glands and use of appropriate elastomer inserts is critical to long term reliability. Cables enter the camera mount enclosure through liquid-tight compression glands. Be sure to insert the cables through the
cable glands on the enclosure before terminating and connecting them (the connectors will not fit through the cable gland). Leave the gland nuts loosened until all cable installation has been completed. Inspect and install gland fittings in the back cover with suitable leak sealant and tighten to ensure water tight fittings. Teflon tape or pipe sealant (i.e. DuPont RectorSeal T™) are suitable for this purpose.

1.6.3 Cable Glands and Spare Parts Kit

The kit contains the two 3/4" cable glands and gland seal plugs required for non-conduit installations.

The remaining parts included in the kit are:

- a spare ground wire
- a spare ground nut and lock washer
- two spare power terminal block plugs
- two spare serial port terminal block plugs
- four spare F-Series back cover screws
- four spare PT-Series back cover screws

1.6.4 Cable Gland Seal Inserts

The PT-Series camera comes with two 3/4” NPT cable glands, each with a three hole gland seal insert. Cables may be between 0.23" to 0.29" OD. Up to six cables may be installed. Plugs are required for the insert hole(s) not being used. The photograph at the right shows two power cables, an Ethernet cable, a serial control cable (no analog video is installed), and two gland seal plugs.

If non-standard cable diameters are used, you may need to locate or fabricate the appropriate insert to fit the desired cable. FLIR Systems, Inc. does not provide cable gland inserts other than what is supplied with the system.

Note

Insert the cables through the cable glands on the enclosure before terminating and connecting them. (In general, the terminated connectors will not fit through the cable gland.) If a terminated cable is required, you can make a clean and singular cut in the gland seal to install the cable into the gland seal.

1.6.5 Connecting power

The camera itself does not have an on/off switch. Generally the PT-Series camera will be connected to a circuit breaker and the circuit breaker will be used to apply or remove power to the camera. If power is supplied to it, the camera will be in one of two modes: Booting Up or Powered On.
The power cable supplied by the installer must use wires that are sufficient size gauge (16 AWG recommended) for the supply voltage and length of the cable run, to ensure adequate current carrying capacity. Always follow local building codes!

Ensure the camera is properly grounded. The camera chassis ground should be provided using the lowest resistance path possible. FLIR requires using a 14 AWG to 16 AWG grounding strap anchored to the grounding lug on the back plate of the camera housing and connected to the nearest earth-grounding point.

Note

The terminal blocks for power connections will accept a maximum 16 AWG wire size.

1.6.6 Video Connections

The analog video connections on the back of the camera are BNC connectors. The camera also provides an RCA video connector that can be used to temporarily monitor the video output.

The video cables used should be rated as RG59U or better to ensure a quality video signal.

1.6.7 Ethernet Connection

The cable gland seal is designed for use with Shielded Category 6 Ethernet cable.

1.6.8 Serial Connection

For serial communications, it is necessary to set the parameters such as the signaling standard (RS-232 or RS-422), baud rate, number of stop bits, parity and so on. It is also necessary to select the communication protocol (either Pelco D or Bosch) and the camera address. By default, the serial interface uses Pelco D, RS-422 standard, 9600 baud rate, 8/1/none, and address 1.

Note

The terminal blocks for serial connections will accept a maximum 20 AWG wire size.
Figure 1-4: PT-Series Camera Connections
1.7 Serial Communications Overview

The installer must decide if the serial communications settings will be configured via hardware (DIP switch settings) or software. If the camera has an Ethernet connection, then generally it will be easier (and more convenient in the long run) to make configuration settings via software. Then configuration changes can be made over the network without physically accessing the camera. Also the settings can be saved to a file and backed up or restored as needed.

If the camera is configured via hardware, then configuration changes in the future may require accessing the camera on a tower or pole, dismounting it, and removing the back and so on. If the camera does not have an Ethernet connection, the DIP switches must be used to set the serial communication options.

Note

The serial communications parameters for the PT-Series camera are set or modified either via hardware DIP switch settings or via software, through a web browser interface. A single DIP switch (SW103-9), Software Override determines whether the configuration comes from the hardware DIP switches or the software settings.

Note

The DIP switches are only used to control serial communications parameters. Other settings, related to IP camera functions and so on, must be modified via software (using a web browser).

1.8 Serial Communications Settings - Hardware DIP Switches

Note

The PT-Series camera reads the settings of the hardware DIP switches only at power up. After serial communications parameters are set or modified via hardware DIP switch settings, the PT-Series camera must be power cycled before the settings take affect.

The camera has two blocks of DIP switches that are used to configure the serial communications settings. One block of switches has 8 switches and is used to set the serial address (or ID) of the camera. The other block of switches has 10 switches and is used to set baud rate, hardware protocol (RS-232 or RS-422), serial protocol (Pelco D or Bosch), and Software Override.

The figure below shows the locations of dip switches SW102 and SW103.

Figure 1-5: PT-Series Camera Configuration
If the Software Override DIP switch is set to the software position (as it is by default), all of the other DIP switches will be ignored, and configuration changes must be made through software. If the switch is set to the hardware position, all configuration settings related to serial communications are made with the DIP switches, and changes that are made via software (with a web browser) will be ignored.

Serial Address: Use the block of switches on the left (SW102) to set the serial address of the camera. The available range of values is from decimal 1 to 255. The dip switches are interpreted as a binary number, with switch 1 representing the least significant bit (the switches are in the reverse order of the bits). A table of serial addresses and their binary equivalents is included at the end of the manual (Serial Address: Decimal To Binary Conversion, pg. 47).

<table>
<thead>
<tr>
<th>ID</th>
<th>Sw 1 LSB</th>
<th>Sw 2</th>
<th>Sw 3</th>
<th>Sw 4</th>
<th>Sw 5</th>
<th>Sw 6</th>
<th>Sw 7</th>
<th>Sw 8 MSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>2</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>3</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>255</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

Other Serial Communication Parameters: The tables below defines the switch locations, bit numbering and on/off settings used in controlling the other serial communication parameters.

<table>
<thead>
<tr>
<th>Baud rate: This is the baud rate of the system user serial port. The available values are 2400, 4800, 9600, 19200 kbaud.</th>
<th></th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 1</td>
<td>Bit 2</td>
<td>2400</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4800</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9600</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19200</td>
<td>ON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Camera Control Protocol: This is the communication protocol selected for the system when operating over the serial port. The available protocols are Pelco-D and Bosch.</th>
<th></th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 3</td>
<td>Bit 4</td>
<td>Pelco-D</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NA</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bosch</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NA</td>
<td>ON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serial Communication Standard: This determines the electrical interface selected for the user serial port. The available settings are RS422 and RS232.</th>
<th></th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 5</td>
<td>Bit 6</td>
<td>RS422</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS232</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>ON</td>
</tr>
</tbody>
</table>
Table 1-3: Dip Switch Settings—SW103

<table>
<thead>
<tr>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Used</td>
<td>Bit 7: X, Bit 8: X</td>
</tr>
<tr>
<td></td>
<td>Bit 7: X, Bit 8: X</td>
</tr>
<tr>
<td>Software Override DIP Switch: This setting determines whether the system will use software settings for configuration or if the dip switch settings will override the software settings. Default is Off.</td>
<td>Bit 9: OFF (Software select), ON (Hardware select)</td>
</tr>
<tr>
<td>Not Used</td>
<td>Bit 10: X</td>
</tr>
</tbody>
</table>
1.9 PT-Series Camera Specifications

Thermal Camera Specifications

<table>
<thead>
<tr>
<th>Array Format</th>
<th>320 × 240</th>
<th>640 × 480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector Type</td>
<td>Long-Life, Uncooled VOx Microbolometer</td>
<td></td>
</tr>
<tr>
<td>Effective Resolution</td>
<td>76,800</td>
<td>307,200</td>
</tr>
<tr>
<td>Pixel Pitch</td>
<td>25 µm</td>
<td>17 µm</td>
</tr>
<tr>
<td>Thermal Frame Rate</td>
<td>NTSC: 30 Hz or 7.5 Hz or PAL: 25 Hz or 8.33 Hz</td>
<td></td>
</tr>
</tbody>
</table>

Optical Characteristics

<table>
<thead>
<tr>
<th>Model</th>
<th>FOV</th>
<th>Focal Length</th>
<th>Model</th>
<th>FOV</th>
<th>Focal Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT-348</td>
<td>48° × 39°</td>
<td>9 mm</td>
<td>PT-645</td>
<td>45° × 37°</td>
<td>13 mm</td>
</tr>
<tr>
<td>PT-334</td>
<td>34° × 28°</td>
<td>13 mm</td>
<td>PT-625</td>
<td>25° × 20°</td>
<td>25 mm</td>
</tr>
<tr>
<td>PT-324</td>
<td>24° × 19°</td>
<td>19 mm</td>
<td>PT-618</td>
<td>18° × 14°</td>
<td>35 mm</td>
</tr>
<tr>
<td>PT-313</td>
<td>13° × 10°</td>
<td>35 mm</td>
<td>PT-612</td>
<td>12° × 10°</td>
<td>50 mm</td>
</tr>
<tr>
<td>PT-307</td>
<td>7° × 5°</td>
<td>65 mm</td>
<td>PT-610</td>
<td>6° × 8°</td>
<td>65 mm</td>
</tr>
<tr>
<td>PT-304</td>
<td>4.6° × 3.7°</td>
<td>100 mm</td>
<td>PT-606</td>
<td>6.2° × 5°</td>
<td>100 mm</td>
</tr>
</tbody>
</table>

Zoom 2× & 4x E-zoom (continuous E-zoom available on specific PT-6xxE models)

Spectral Range 7.5 µm to 13.5 µm

Focus Range Athermalized, Focus-Free

Visible Camera Specifications

Detector Type	1/4” Exview HAD CCD
Effective resolution	380,000 (NTSC), 444,000 (PAL)
Field Of View	Field of view: 57.8° (H) to 1.7° (H)
Lens	3.4 mm (wide) to 122.4 mm (narrow), F1.6 to F4.5

Video

Composite Video	NTSC or PAL Standard
Video Compression	Two independent channels of streaming MPEG-4, H.264, or MJPEG, for each camera.
Streaming Resolution	**NTSC:** D1 (720 × 480), 4SIF (704 × 480), VGA (640 × 480), CIF (352 × 240), QVGA (320 × 240) **PAL:** D1 (720 × 576), 4CIF (704 × 576), VGA (640 × 480), CIF (352 × 288), QVGA (320 × 240)
Thermal AGC Modes	Preset AGC modes and manual Brightness (ITT Mean), Contrast (Max Gain), Sharpness (DDE Gain), and AGC Filter controls.
Thermal AGC Region of Interest (ROI)	Default Presets and User definable to insure optimal image quality for subjects of interest
Image Uniformity Optimization	Automatic Flat Field Correction (FFC) - Thermal and Temporal Triggers
System Integration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>Yes</td>
</tr>
<tr>
<td>Serial Control Interfaces</td>
<td>RS-232/-422; Pelco D, Bosch</td>
</tr>
<tr>
<td>External Analytics Compatible</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Pan/Tilt

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pan Angle/Speed</td>
<td>Continuous 360°; 0.1° to 60°/sec</td>
</tr>
<tr>
<td>Tilt Angle/Speed</td>
<td>+90° to -90°; 0.1° to 30°/sec</td>
</tr>
<tr>
<td>Programmable presets</td>
<td>128</td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>~37 lb (16.8 kg); Configuration Dependent</td>
</tr>
<tr>
<td>Dimensions (L, W, H)</td>
<td>13.7” × 18.4” × 12.8” (348 × 467 × 326 mm)</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>24 Vac (21-30 Vac)</td>
</tr>
<tr>
<td></td>
<td>24 Vdc (21-30 Vdc)</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>24 Vdc = 65 W (max no heater); 195 W (max w/ heaters)</td>
</tr>
<tr>
<td></td>
<td>24 Vac = 85 VA (max no heater); 215 VA (max w/ heaters)</td>
</tr>
<tr>
<td>Inrush Current</td>
<td>< 10 A for DC supply with slew rate > 10 ms</td>
</tr>
<tr>
<td></td>
<td>< 38 A for AC power supply with slew rate > 4.17 ms</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Rating (dust & water ingress)</td>
<td>IP66</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-40 °C to 70 °C continuous operation or cold start</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-55 °C to 85 °C</td>
</tr>
<tr>
<td>Humidity</td>
<td>0-95% relative</td>
</tr>
<tr>
<td>Shock</td>
<td>MIL-STD-810F Transportation</td>
</tr>
<tr>
<td>Vibe</td>
<td>IEC 60068-2-27</td>
</tr>
<tr>
<td>De-Icing / Anti-Icing</td>
<td>MIL-STD-810F, Method 521.1</td>
</tr>
</tbody>
</table>

Power consumption is independent of the input voltage when the heater is off. The power drawn by the heaters increases with the input voltage to a maximum at 30 Volts.

Compliance & Certifications

<table>
<thead>
<tr>
<th>Standard</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61000-6-4: 2007 Class A/CISPR 22: 2005 Class A</td>
<td></td>
</tr>
<tr>
<td>EN 61000-3-2: 2006</td>
<td></td>
</tr>
<tr>
<td>FCC Part 15, Subpart B, Class A</td>
<td></td>
</tr>
<tr>
<td>IP 66 (IEC 60529)</td>
<td></td>
</tr>
<tr>
<td>IEC 60068-2-27</td>
<td></td>
</tr>
</tbody>
</table>
This chapter provides basic information on how to setup and operate a new camera. Use a bench test to verify camera operation before the camera is configured for the local network.

2.1 IP Camera, ONVIF Profile S Compliant

When the camera is connected to the network it functions as a server; it provides services such as camera control, video streaming, network communications, and geo-referencing capabilities. The communications protocol used is an open, standards-based protocol that allows the server to communicate with a video management client, such as FLIR Latitude™ or with a third-party VMS client, including systems that are compatible with ONVIF Profile S. These clients can be used to control the camera and stream video during day-to-day operations. Refer to the individual product web page at https://www.flir.com/browse/security/thermal-security-cameras/ for a listing of supported VMS clients.

2.1.1 Serial and/or IP Communications

For a camera that is installed in a legacy-type CCTV network using analog video, the camera may be controlled with serial communications. The serial cable from the camera will be connected to a keyboard/Joystick device, or to a video switch, encoder, or DVR that has a serial communication port. In this case the installer may want to configure parameters such as the serial address of the camera, the baud rate, and so on. These parameters can be set through software using a web browser. The parameters can also be set using DIP switches when IP communications are not used. Refer to Serial Communications Overview, pg. 14.

2.1.2 Server Configuration

It may be necessary for the installer to make a limited number of configuration changes to the camera server, such as setting the IP communication parameters, setting new login passwords, as well as some scene specific parameters. For example, each camera comes from the factory with the same default IP address, so adding more than one camera to an IP network requires each camera to be configured with a different IP address. On the other hand, many of the configuration parameters will remain unchanged from the factory default settings.

2.2 Camera Bench Test

Since the camera offers both analog video and IP video, it is recommended that the installer test the camera using the same type of connections as the final installation. If using analog video and serial communications in the final installation, also test the IP communications when performing the bench test. If any image adjustments are necessary, they can be done using a web browser over the IP connection, and saved as power-on default settings.

If using serial communications, connect the serial cable from the camera to a serial device such as a keyboard, and confirm that the camera is responding to serial commands. Before using serial communications, it may be necessary to configure the serial device interface to operate with the camera. About two minutes after the camera is turned on, the analog video temporarily displays system information including the serial number, IP address, Pelco address, and the Baud rate. For example:

S/N: 1234567
IP Addr: 192.168.250.116
PelcoD (Addr:1): 9600 SW
Once the camera is connected to a network and powered on, set camera network parameters using the FLIR Discovery Network Assistant (DNA) software, perform a bench test by using a web browser to view the video and control the camera, or view video in the local Network Video Management System (for example, FLIR Latitude). The FLIR Discovery Network Assistant (DNA) software does not require a license to use and is a free download from the individual product web page at: https://www.flir.com/browse/security/thermal-security-cameras/

2.2.1 Set IP Address using the FLIR Discovery Network Assistant (DNA)

The PT-Series camera is shipped with a static IP address: 192.168.250.116. Assuming the existing network uses IP addresses that are unique and different than the default address on the camera, configuring the camera for IP communications generally involves the following steps:

Step 1 Connect the Ethernet port of the camera to the existing IP camera network.

Step 2 Connect a PC or laptop to the same network.

Step 3 From the PC connected to the camera network, use the DNA utility to discover and display the camera’s current IP address.
 a Download the DNA utility.
 b Unzip the utility, then double-click to run the executable file (DNA.exe). All the units on the VLAN are discovered.
 c For additional instructions on using DNA, refer to the DNA User’s Manual available in the Help () link while the software is running.

Step 4 Select Assign IP to change the IP address or to set IP addressing to DHCP.

Step 5 Double-click the camera in DNA’s Discovery List to open the camera’s web server Login page in Internet Explorer or point your web browser to the camera’s IP address.
2.2.2 Log into the Camera Web Page

Use a web browser to connect to the camera as described below, and confirm it is streaming video. Once the bench test is complete, use the web browser to make configuration changes as needed (for example, set the IP address to an address that is compatible with the existing network).

Log into the camera using one of three User Names: user, expert, and admin (the corresponding passwords by default are user, expert, and admin respectively). The user login can be used to do the initial bench test of the camera. The expert login may be used to make configuration changes such as setting the IP address and other server settings. The admin login has access to all configuration, setup, and maintenance settings. The login passwords should be changed (admin login required) to prevent unauthorized access. Two web sessions can be active at once. An inactive session will be logged out after 20 minutes.

For information on how to change the passwords, refer to Server > Security Options, pg. 33.

Note
A VMS Remote to the camera, ONVIF or Nexus CGI, uses the same password as the web interface. Refer to Sensor > Communications > VMS Remote, pg. 35.

Step 1 Open a web browser and enter: 192.168.250.116. The login screen with a picture of the camera will appear.

Step 2 Enter user for the User Name and user for the Password, and click Login.

Figure 2-1: Camera Web Page Login Screen
2.2.3 Live Video Page

The Live Video page displays a live image from the camera on the left part of the screen. Along the top of the screen are some menu choices, including Live Video (the red text indicates it is selected), Help and Log out.

On the right side are some control buttons, and a virtual joystick (for pan/tilt capability).

In the lower right corner of the web page there is a frame rate selector. This selector allows the user to change the rate at which the frames are displayed in the browser from the default 8 fps up to 16 fps. This controls the frame rate of the user’s own web browser only, and does not affect the video streams to other users or to an NVR. If the live video is not displayed, refer to Troubleshooting Tips, pg. 43.

Help

The Help menu displays software version information. If it is necessary to contact FLIR Technical Support for assistance, it will be helpful to have the information from this page on hand. For information about the camera including hardware part numbers and serial numbers refer to the Maintenance > Product Info > Identification web page (requires Admin login).

Log out

Use this button to disconnect from the camera and stop the display of the video stream. If a web session is inactive for 20 minutes, it will be stopped and it will be necessary to log in again.

Toggle PC/Camera time

Use this button to display either the PC time or the camera time.
Camera Control and Status

In the lower left of the screen are two indicator lights: Control and Status. Initially the Control light is off, as in the image above, indicating the user is not able to control the camera immediately. When multiple users are connected to a camera, only one user at a time can issue commands to the camera. If another user has control of the camera, the Control light is yellow.

A user is able to request control of the camera by clicking on the yellow or black light, or simply by sending a command to the camera. After a short pause, the Control light should turn green. Be patient, there may be a slight delay between each command while the browser waits for a response from the camera.

If a command is sent to the camera when the user does not have control, the command will not be executed, and it is necessary to send the command again once the light is green.

Web Control Panel

The control buttons on the right side of the page can control the camera. When the mouse cursor is positioned over a button, a tool tip is displayed which explains the function of the button.

When the mouse is positioned over the video window, the video stream source is shown in the upper left corner of the video image and a snapshot button is shown in the upper right corner of the video image. The snapshot button will save an image as a .jpg file to the selected destination folder or as determined by the web browser.

This same web interface is used with various FLIR thermal cameras, some of which have different capabilities. As a result, different buttons in the control panel will appear for different FLIR cameras.

The functions of the buttons appearing for the PT-Series cameras are described below:
Basic Operation and Configuration

Zoom In/Zoom Out
These buttons zoom the active camera (IR or daylight). On cameras with zoom lenses, digital zoom or E-Zoom extends the ability to zoom in, but at the expense of resolution. Also, refer to Sensor > Devices > IR > Zoom Slave, pg. 35.

Toggle Video Source
This button causes the active video source to be switched between the thermal IR camera and the daylight camera. Refer to Sensor > Devices > IR > Zoom Slave, pg. 35.

Toggle Polarity—IR only
This button changes the way various objects are displayed in the image, for example, with hot objects displayed as white and cold objects as black, or vice versa.

Toggle Palette—IR only
This button causes the IR camera to cycle through different color palettes. Each of the palettes presents the IR image using a different color scheme. Use the Toggle Polarity button to invert the palette, for example, between white hot and black hot.

Perform IR NUC Calibration—IR only
This button causes the camera to do a manual Non-Uniformity Correction (NUC) operation. The PT-Series camera, by default, does an automatic NUC calibration as required based on changes in temperature.

Toggle Scene Preset—IR only
This button causes the IR camera to cycle through different image settings. The Scene Presets cause the image brightness and contrast to adjust. Depending on the time of day, weather, and other conditions, one Scene Preset may be preferable to the others.

Toggle Automatic Gain Control (AGC)
This button causes the camera to cycle through different AGC options that use a combination of settings to produce different configurations that could improve the video image for a given set of conditions.

Freeze Video—Visible only
This button stops the video on a single frame. Click again to start the video.

Autofocus
This button causes the DLTV camera to toggle the autofocus mode. Clicking the button a second time reinstates the autofocus mode and causes an autofocus operation. This button causes the IR camera with a zoom lens to perform an autofocus operation.
Function

When the Function button is selected, the keypad changes to a numeric keypad. A tool tip can be shown when a function has been assigned to a number. Use the back (◀) arrow to return to the Control Panel.

Pan/Tilt Home

This button causes the camera to go to the Home position. To set a new Home position, hold the button for approximately 3 seconds.

Go to Preset

The PT-Series camera can have a set of predetermined pan/tilt locations, each of which is known as a preset. For example, a preset may be set for each of the locations where security surveillance is most needed, a gate, doorway, and other points of access.

When the Go to Preset button is selected, the keypad changes to a numeric keypad.

To cause the camera to go to a predefined location view (Preset) select a number.

Use the back (◀) arrow to return to the Control Panel.

2.3 Camera Configuration

The following procedures describe how to do the most common camera configuration steps, such as setting the camera IP address and hostname and changing the user passwords. To make these changes, it is necessary to log in using the admin account.

Note

In most installations, the only camera settings needed are available from the Live Video page (using Scene Presets or Polarity). Use caution when modifying the camera settings described in this section. Some settings may adversely affect the thermal image over time or may completely disable the camera or the network interface.

2.3.1 Expert and Admin Accounts

When a user logs in as expert or admin, additional menus, Setup and Maintenance are available. The Setup menu is used to make advanced adjustments to the thermal camera, the daylight camera, and the pan/tilt platform.

The basic camera configuration steps are accessed through the Maintenance > Server menu, using the menus on the left side of the page. The LAN Settings, Services, and Security Options selections are described below (Maintenance Menus, pg. 29). The expert login has access to the Server pages. The admin login provides access to all configuration options. The login passwords should be changed (admin login required) to prevent unauthorized access.
2.3.2 Setup Menu

The Setup menu is used for GEO Settings, camera setup, and defining parameters for surveillance zones.

When configuration changes are made with the web browser, the settings are saved to a configuration file. It is a good idea to make a backup of the existing configuration file prior to making changes, and another backup once the changes are finalized. If necessary the camera can be restored to its original factory configuration or one of the saved configurations (refer to Sensor > Communications > Serial Remote, pg. 34).

It is necessary to have control of the camera to make Setup changes. Changes made through the Setup menu have an immediate effect (it is not necessary to stop and restart the server). To use these settings at power up, it is necessary to save the changes.

Adjustments to the IR settings should only be made by someone who has expertise with thermal cameras and a thorough understanding of how the various settings affect the image. In most installations, the only camera settings needed are available from the Web Control panel on the Live Video page (Scene Presets, Polarity, Palettes, and AGC). Haphazard changes can lead to image problems including a complete loss of video.
Basic Operation and Configuration

IR > AGC ROI

The IR camera adjustments to the region of interest (ROI) determine what portion of the image is used by the Automatic Gain Control (AGC) algorithm. By default all of the pixels in the image are considered; in some cases it may provide an improved image if a portion of the image is excluded. For example, the sky is generally very cold, so if the ROI excludes the sky it may add more contrast to the rest of the image. A pull-down list offers some convenient options.

When Custom is selected, a handle is shown in the center of the screen.

Drag the handle to set the size of the ROI box.

Drag the ROI box over the portion of the scene that will control the AGC.

IR > AGC

The AGC parameters affect how the overall IR video image appears. Using the AGC button on the Live Video page (refer to Toggle Automatic Gain Control (AGC), pg. 24), toggle through five AGC algorithms. The default algorithms are suitable for most installations, but each selection allows a combination of further adjustments that may provide a more appealing image, depending on personal preferences. Be aware that the settings that are optimal at one time may be less optimal a short time later, since conditions such as weather and time of day affect the image and are constantly changing.

Experiment with different AGC parameters to find the settings that work best for the particular installation. Select Save Settings button at the bottom of the page to keep the settings after a power cycle or select the Factory Defaults button to return the settings to default values.

- **Brightness** (ITT Mean) setting determines the temperature that is at the middle of the 256 "shades of gray" produced by the AGC. Positive values allow more detail in hotter scenes, while negative values allow more detail in lower temperature scenes.
• **Contrast** (Max Gain) can be used to increase contrast, especially for scenes with little temperature variation (it may also increase noise due to increased gain).

• **Sharpness** (DDE Gain) is used to enhance image details and/or suppress fixed pattern noise. Positive values increase Sharpness, while negative values soften the image and filter fixed pattern noise. A setting of 0 is neutral and will not have any effect.

• **AGC Filter** determines how quickly a scene will adjust when a hot object appears (or disappears) within the AGC ROI. If set to a low value, when a hot object enters the ROI, the AGC will adjust more slowly to the hot object, resulting in a more gradual transition.

Pan and Tilt

The azimuth and elevation angles are measured in degrees. The elevation angle is measured from horizontal; negative values are down, positive values are up. The Azimuth angle is measured from the front of the pan/tilt unit; negative values are counter-clockwise, positive values are clockwise.

Surveillance > Scan List

To setup Presets:
- position camera,
- select Preset ID

Click Set

To move the camera:
- enter coordinates,
- click Go to

Current camera coordinates and pan/tilt mode
Surveillance > Auto Scan

Relative Auto Scan (Surveillance mode) will scan the scene starting with the current position of the camera. Absolute Auto Scan will scan the scene starting with the zero azimuth position of the camera. These can be started and the parameters set in the web page, note also that Absolute Auto Scan can also be started as an option in the Startup mode when the camera boots. Refer to Sensor > Devices > IR > Zoom Slave, pg. 35.

2.3.3 Maintenance Menus

Initially, when the Maintenance page is selected, the Server > LAN Settings page is displayed.

Note, In order to make some configuration changes through the Maintenance menu, it is necessary to save the changes, then stop and restart the server to make the changes take effect.

The basic camera configuration steps are accessed through the Maintenance menu, using the Server submenu on the left side of the page. The LAN Settings, Services, and Security Options selections are described below. Generally with these settings it is necessary to save the changes to make them effective, but it is not necessary to stop and restart the server.

Step 1 If you are logged into the Nexus Server user account, select Log out or direct your web browser to: http://\192.168.250.116.

Step 2 Enter admin for the User Name and admin for the Password, and click Login.

Step 3 Select Maintenance from the top menu. The following LAN Settings page appears.
LAN Settings: The LAN Settings page can be used to set the hostname, default gateway, and IP address for the camera. The default IP Address mode is static; the mode can also be set to DHCP.

When the LAN settings are changed and the Save button is clicked, a pop-up message will appear to indicate the network interface should be restarted. Once all the changes have been made and saved, click on the Restart Network button at the bottom of the page.

Once the IP address of the camera is changed, the PC may no longer be on the same network and therefore may not be able to access the camera until the IP address on the PC is changed also. For that reason, you may wish to change the IP address after making other configuration changes.

If the Hostname is changed, the new name may not show up in FLIR Latitude until the camera is rebooted. To reboot the camera, save any configuration changes, then select Server Status and click the Reboot button.

Note
The IP address is temporarily displayed on the analog video for a short while after the camera boots up. If you are unsure what the camera IP address is set to, it may useful to reboot the camera and watch for the IP Address information after the camera boots up. To reset the IP address to the factory default, refer to Restoring the Factory Settings, pg. 46.
Basic Operation and Configuration

Server > Services > Date and Time

The **Date and Time** settings page is used to configure the date and time settings. The date, time, and time zone can be obtained from an NTP server, or can be entered manually. If the NTP mode is selected, the NTP server information can be entered. The NTP server address can be entered as a static address or can be obtained via DHCP.

![Date and Time Settings](image)

Note

Set the date and time parameters, then select the **Save** button at the bottom. After saving the settings, reboot the system. Refer to **Server Status, pg. 32**.

If the Custom mode is selected, a pop-up window allows the information to be entered manually.
Server Status: The Server Status page provides an indication of the current server status (either running or stopped) and buttons for starting or stopping the server or for rebooting the system.

After making configuration changes, it is necessary to save the changes to the server (there is a **Save** button at the bottom of each configuration page). The configuration changes do not take effect immediately. Generally, it is also necessary to stop and restart the server for the changes to become effective. The server has a configuration that is active and running, and another configuration that is saved (and possibly different than the running configuration).

The message at the bottom of the page indicates the saved configuration is different than the active (running) configuration, and it is necessary to restart the server.

It may take up to 20 seconds or more to stop the server, especially when there are multiple video streams open. Be patient when stopping the server.

When the server is stopped and the page is refreshed, the status will show Server Stopped and the Start button will be enabled.

Click on the Start button to restart the server, and when the page refreshes, the status will again show Server Running. The Start button will be replaced by a Stop button when the startup procedure has completed.
Server > Security Options

Use the **Security Options** page to restrict access through the camera web server to specific IP addresses and to set or change passwords. The **admin** login can change or set any password. The **expert** login can only configure the **expert** login password.

As an additional security measure, limit which computers have access to the web browser interface. Simply add a computer’s IP address and click Add. After all the allowed IP addresses are entered, select the **Save** button to save the changes.

Note

A VMS Remote to the camera, ONVIF or Nexus CGI, uses the same password as the web interface. Refer to **Sensor > Communications > VMS Remote, pg. 35**.

To maintain security of the system set new passwords for each of the three login accounts.

- **user**—The user account can only use the **Live Video** page and controls.
- **expert**—The expert account can use the **Live Video** page, the camera **Setup** page, the Server pages on the **Maintenance** menu, and set the password for the expert login.
- **admin**—The admin account can use all pages and set passwords.
Sensor > Communications > Networking

Sensor > Communications > Serial Remote

Toggle Server (Stop/Start)
Sensor > Communications > VMS Remote

If the camera is used with a VMS that is compliant with ONVIF, the parameters can be adjusted (if needed) to work with the VMS. Refer to the VMS documentation to determine what parameter values are needed. By default, the camera is configured with a VMS Remote interface with ONVIF 2.0 parameters (Profile S).

Interface 0 is the Nexus CGI interface used by the camera server. Select INTERFACE 0 and scroll down to enable password authentication.

Authentication when enabled uses the same passwords set from the Server Security Options page. Refer to Server > Security Options, pg. 33. Several types of third-party Video Management Systems (VMS) are supported by FLIR IP cameras. Because these systems tend to evolve and change over time, contact the local FLIR representative or FLIR Technical Support to resolve any difficulties or questions about using this feature.

Sensor > Devices > IR > Zoom Slave

The Zoom Slave function is set from the IR web page. To slave the IR camera to the DLTV zoom select the IR web page and scroll down to Zoom Slave.

When the IR camera zoom is slaved to the DLTV camera (Specific Camera), the cameras will only zoom when the DLTV camera is the active camera.
Sensor > Modules

The Video pages and the On-screen display (OSD) page are described below. Use the Video page to modify the video stream parameters that affect both image quality and transmission bandwidth. With the settings on the OSD page, text information (for example, camera name, date/time, etc.) can be added as an overlay on the video. The OSD text will appear on the IP video streams as well as the analog video output.

Video Pages: By default, four video streams are enabled for the camera: Video 0, Video 1, Video 2, Video 3. Video 0 and Video 1 are IR streams; Video 2 and Video 3 are visible streams. All video streams are available for viewing from a client program such as FLIR Latitude, a stand-alone video player, or another VMS. By default, Video 0 and Video 2 use H.264 encoding while Video 1 and Video 3 use MJPEG encoding. To modify parameters that affect a particular IP Video stream from the camera, select the appropriate link (for example, Video 0).

The parameters in the Video Settings section will have a significant impact on the quality and bandwidth requirements of the video stream. In general it is recommended that the default values are used initially, and then individual parameters can be modified and tested incrementally to determine if the bandwidth and quality requirements are met.

Caution!

Adjustments to these settings should only be made by someone trained with thermal cameras and a thorough understanding of how the various settings affect the image. Haphazard changes can lead to image problems including a complete loss of video.
The default RTP Settings for connecting to an IP video stream from the PT-Series are shown in the illustration. The RTP Port and the Stream Name are used when establishing a session from a client.

Given the camera IP address of 192.168.250.116, the complete connection string for each of the video stream is as follows:

VIDEO 0 - rtsp://192.168.250.116:554/ch0
VIDEO 1 - rtsp://192.168.250.116:554/ch1
VIDEO 2 - rtsp://192.168.250.116:554/ch2
VIDEO 3 - rtsp://192.168.250.116:554/ch3

In some networks, the RTP/RTSP traffic is carried (tunneled) over Hypertext Transfer Protocol (HTTP) as that may allow the traffic to cross network boundaries and firewalls. While this method involves more overhead due to encapsulation, it may be necessary for clients to access the video streams when HTTP proxies are used.

Video 0 and Video 2

For the streams **Video 0** and **Video 2**, the codec options are H.264, MPEG4, or MJPEG. The MPEG4 codec requires the least amount of processing, while MJPEG requires the most.

When the Rate Control parameter is set to CBR (Constant Bit Rate), the Bit Rate parameter is used for as average target rate; the system attempts to keep the stream at or near the target bit rate. (Note that the Quality setting does not affect the bit rate.)

When the Rate Control parameter is set to CVBR (Constrained Variable Bit Rate), the Bit Rate parameter is used as an upper limit bit rate and the Quality setting further adjusts the amount of video data in the stream; the system keeps the stream at or under the target bit rate.

The I-Frame Interval parameter controls the number of P-frames used between I-frames. I-frames are full frames of video and the P-frames contain the changes that occurred since the last I-frame. A smaller I-Frame Interval results in higher bandwidth (more full frames sent) and better video quality. A higher I-Frame Interval number means fewer I-frames are sent and therefore results in lower bandwidth and possibly lower quality.
The Image Size parameter controls the video resolution and therefore can have a large impact on bandwidth usage. The larger the size of the frame, the better the resolution and the larger the network bandwidth required. Table 2-1 provides the corresponding resolution for each setting.

![Image Size](image-url)

Table 2-1: Image Size Settings

<table>
<thead>
<tr>
<th>Resolution</th>
<th>NTSC</th>
<th>PAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>720 x 480</td>
<td>720 x 576</td>
</tr>
<tr>
<td>4SIF</td>
<td>704 x 480</td>
<td>704 x 576</td>
</tr>
<tr>
<td>VGA</td>
<td>640 x 480</td>
<td>640 x 480</td>
</tr>
<tr>
<td>SIF</td>
<td>352 x 240</td>
<td>352 x 288</td>
</tr>
<tr>
<td>QVGA</td>
<td>320 x 240</td>
<td>320 x 240</td>
</tr>
</tbody>
</table>

As a rule of thumb, if the video will be viewed on its own and on a reasonably large screen, a large image size setting may look better. On the other hand, if the video is shown as a tile in a video wall, a smaller image size may look as good and consume less bandwidth.

Video 0 and Video 2 Multicast

By default, the video streams from the camera are sent using unicast packets rather than multicast. This means a given packet of IP Video will be sent separately to each client that has that video stream open. Therefore each additional client will cause the bandwidth to increase and cause more overhead on the system in comparison to multicast. With Multicast enabled, video packets are shared by streaming clients, so additional clients do not cause bandwidth to increase as dramatically. If the video streams are used by more than one client/location, it may be wise to use multicast for more efficient bandwidth usage.

With Multicast enabled, new fields are shown, Destination Network IP address and Destination Port, as well as TTL (time-to-live).

If more than one camera is providing multicast streams on the network, be sure to configure each stream with a unique multicast Destination Network IP address and Destination Port combination.

The time-to-live field controls the ability of IP packets to traverse network or router boundaries. A value of 1 restricts the stream to the same subnet. Values greater than 1 allow ever increasing access between networks.

Video 0 and Video 2 RTP Streaming

There are some challenges with streaming video over an IP network, when compared to IP applications which are less time-critical, such as email and web browsing. There are many parameters and factors related to network infrastructure, protocols, codecs, and so on that can affect the quality and bit rate of a video stream when it is established between the camera and a client.
Basic Operation and Configuration

The video streaming is done using a protocol generally referred to as Real-time Transport Protocol (RTP), but there are actually many protocols involved, including Real-Time Transport Control Protocol (RTCP) and Real Time Streaming Protocol (RTSP). In the background, a “negotiation” takes place to establish a session between the client (such as FLIR Latitude, or a third party VMS or video player) and the camera.

Sensor > Modules > OSD

Use the OSD page to turn on and configure the On Screen Display (OSD) options. Selected camera-related information (such as camera name, date, time, etc) can be shown as an overlay on the analog video and in the IP video streams.

For example, the Label Text Mode can show the Friendly Name (configured on the Product Info page), Hostname (configured on the LAN Settings page), or a Custom text string (select Custom). Options for each text item control the “background” Transparency, Color, Text Mode, Style Mode, Size, and Location.
Files > Firmware

For camera firmware updates, manually install a firmware update file by first stopping the camera server, browsing to select the update file on your computer, and selecting Upload. The firmware files will be uploaded and installed.

Files > Configuration

The Configuration page allows the Nexus Server configuration to be displayed or backed up locally (on the camera). The configuration file can also be downloaded to another computer for backup, or a new configuration file can be uploaded from a computer to the camera. Shown at the top of the screen is the configuration script file in a scrollable window. This can be useful if you ever need help from a support engineer.
In the Backup & Recovery section, click the Restore link associated with the factory.defaults configuration to restore the camera to its factory settings. This file can not be modified or deleted, so it is always available.

To make a backup of your system settings, enter a name in the box and click Backup. This will make a backup file of the current configuration and store it locally on the camera.

In the Upload & Download section, the Download Configuration File link can be used to save a copy to a PC for safe keeping. A pop-up window will ask for a file name and destination folder. The Upload button is used to transfer a configuration file from a PC to the camera.

Files > Log > Field Support Log

Scroll down and select the **Download** button under Field Support Log to download a zip file to the computer for field service evaluation.
2.4 Thermal Imaging Overview

When power is applied to the PT-Series camera, a FLIR splash screen is displayed for less than two seconds, and then the camera outputs the live video image. No operator action or intervention is required and no configuration of the camera is necessary.

The thermal camera makes an image based on temperature differences. In the thermal image, by default the hottest item in the scene appears as white and the coldest item is black, and all other items are represented as a gray scale value between white and black.

It may take some time to get used to the thermal imagery from the camera, especially for someone who only has experience with normal daylight cameras. Having a basic understanding of the differences between thermal and daylight cameras can help with getting the best performance from the thermal camera.

Both thermal and daylight cameras have detectors (pixels) that detect energy. One difference between thermal and daylight cameras has to do with where the energy comes from to create an image. When viewing an image with an ordinary camera, there has to be some source of visible light (something hot, such as the sun or lights) that reflects off the objects in the scene to the camera. The same is true with human eyesight; the vast majority of what people see is based on reflected light energy.

On the other hand, the thermal camera detects energy that is directly radiated from objects in the scene. Most objects in typical surroundings are not hot enough to radiate visible light, but they easily radiate the type of infrared energy that the thermal camera can detect. Even very cold objects, like ice and snow, radiate this type of energy.

The camera is capable of sensing very small temperature differences, and produces a video image that typically has dramatic contrast in comparison to daylight cameras. This high contrast level from the thermal video enables intelligent video analytic software to perform more reliably.

The performance of the camera will likely vary throughout the day. Right after sunset, objects warmed by the sun will appear warmest. Early in the morning, many of these objects will appear cooler than their surroundings, so be sure to look for subtle differences in the scene, as opposed to just hot targets.

Originally developed for the military, thermal imaging cameras are now deployed in numerous commercial applications where it is impractical or too expensive to use active illumination (lights). They are perfect for a wide variety of applications including transportation, maritime, security, fire fighting, and medical applications. The cameras often provide improved daytime viewing in environments where traditional video camera performance suffers, such as in shadows or backlit scenes.

The PT-Series camera is a state-of-the-art thermal imaging system that will provide excellent night visibility and situational awareness, without any form of natural or artificial illumination. The system is easy to use, but it is useful to understand how to interpret what is displayed on the monitor.

While the imagery on the monitor may at first look similar to ordinary black and white daylight video, experience with the camera in varying conditions and seasons will lead to an appreciation of the characteristics that make thermal imaging distinct. A few tips on how to interpret some of the imagery may help you to make the most of your system.
The thermal camera does not sense light like conventional cameras; it senses heat or temperature differences. The camera senses small "differences" in apparent radiation from the objects in view, and displays them as either white (or lighter shades of gray) for warmer objects, and black (or darker shades of gray) for colder objects.

The thermal imaging camera relies on the fact that all objects, even very cold objects like ice, emit thermal energy in the portion of the infrared spectrum that this camera can "see", the long wave infrared (LWIR). Therefore, unlike an illuminated infrared camera, a thermal camera does not need an additional active illumination source, and creates video based on directly radiated rather than reflected energy.

This is why hot objects such as parts on an engines and exhaust pipes appear white, while the sky, puddles of water and other cold objects appear dark (or cool)\(^1\). Scenes with familiar objects will be easy to interpret with some experience. The camera automatically optimizes the image to provide you with the best contrast in most conditions.

2.5 Troubleshooting Tips

If help is needed during the installation process, contact your local FLIR representative. FLIR Systems, Inc. offers a selection of training courses to help get the best performance and value from your thermal imaging camera.

Find out more at the FLIR training web page: https://www.flir.com/support-center/training/

Image freezes momentarily: By design, the camera image will freeze momentarily on a periodic basis during the Flat Field Correction (FFC) cycle (also known as Non-Uniformity Correction or NUC). Every few minutes, the image will momentarily freeze for a fraction of a second while the camera performs a flat field correction. A shutter activates inside the camera and provides a target of uniform temperature, allowing the camera to correct for ambient temperature changes and provide the best possible image.

No video: If the camera will not produce an image, check the video connection at the camera and at your display. If the connectors appear to be properly connected but the camera still does not produce an image, ensure that power has been properly applied to the camera and the circuit breaker is set properly. If a fuse was used, be sure the fuse is not blown. If the video cabling is suspected as a possible source of the problem, plug a monitor into the RCA connection inside the camera and determine if it produces an image.

When the camera is powered on, it will do a NUC operation shortly after startup. If you are uncertain if the camera is receiving power, it may be useful to listen to the camera to hear if the click-click of the shutter mechanism can be heard. It may be only be possible to perform this test when the camera is on a work bench rather than in its installed position.

If the camera still does not produce an image, contact the FLIR dealer or reseller who provided the camera, or contact FLIR directly (contact information is provided on the rear cover of this manual).

Performance varies with time of day: You may observe differences in the way the camera performs at different times of the day, due to the diurnal cycle of the sun. Recall that the camera produces an image based on temperature differences.

1. By default, the camera represents hot objects as white and cold objects as black. The camera can be set to use the Black Hot polarity setting, which displays hot objects as black and cold objects as white and is effectively the negative of White Hot polarity.
At certain times of the day, such as just before dawn, the objects in the image scene may all be roughly the same temperature, compared to other times of the day. Compare this to imagery right after sunset, when objects in the image may be radiating heat energy that has been absorbed during the day due to solar loading. Greater temperature differences in the scene generally will allow the camera to produce high-contrast imagery.

Performance may also be affected when objects in the scene are wet rather than dry, such as on a foggy day or in the early morning when everything may be coated with dew. Under these conditions, it may be difficult for the camera to show the temperature the object itself, rather than of the water coating.

Unable To Communicate Over Ethernet: First check to ensure the physical connections are intact and that the camera is powered on and providing analog video to the monitor. When the camera is turned on, confirm the startup information is displayed on the analog monitor after approximately 90 seconds. For example:
S/N: 1234567
IP Addr: 192.168.250.116
Confirm that the IP address for the PC (for example, 192.168.250.1) is on the same network as the camera.

By default the camera will broadcast a discovery packet two times per second. Use the FLIR Discovery Network Assistant (DNA) or a packet sniffer utility such as Wireshark and confirm the packets are being received by the PC from the camera.

Unable to View Video Stream: If the video stream from the camera is not displayed in FSM, it could be that the packets are blocked by the firewall, or there could be a conflict with video codecs that are installed for other video programs. If necessary, test to make sure the video from the camera can be viewed by a generic video player such as VLC media player (http://www.videolan.org/vlc/). To view the video stream, specify RTSP port 554 and the appropriate stream name such as “ch0”. For example:
rtsp://192.168.250.116:554/ch0

Noisy image: A noisy image is usually attributed to a cable problem (too long or inferior quality) or the cable is picking up electromagnetic interference (EMI) from another device. Although coax cable has built-in losses, the longer the cable is (or the smaller the wire gauge/thickness), the more severe the losses become; and the higher the signal frequency, the more pronounced the losses. Unfortunately this is one of the most common and unnecessary problems that plagues video systems in general.

Cable characteristics are determined by a number of factors (core material, dielectric material and shield construction, among others) and must be carefully matched to the specific application. Moreover, the transmission characteristics of the cable will be influenced by the physical environment through which the cable is run and the method of installation. Use only high quality cable and ensure the cable is suitable to the marine environment.

Check cable connector terminations. Inferior quality connections may use multiple adapters which can cause unacceptable noise. Use a high-quality video distribution amplifier when splitting the signal to multiple monitors.

Image too dark or too light: By default the PT-Series thermal camera uses an Automatic Gain Control (AGC) setting that has proven to be superior for most applications, and the camera will respond to varying conditions automatically. The installer should keep in mind that the sky is quite cold and can strongly affect the overall image. It may be possible to avoid a problem by slightly moving the camera up or down to include (or exclude) items with hot or cold temperatures that influence the
overall image. For example, a very cold background (such as the sky) could cause the camera to use a wider temperature range than appropriate.

Eastern or Western Exposure: Once installed, the camera may point directly east or west, and this may cause the sun to be in the field of view during certain portions of the day. We do not recommend intentionally viewing the sun, but looking at the sun will not permanently damage the sensor. In fact the thermal imaging camera often provides a considerable advantage over a conventional camera in this type of back-lit situation. However, the sun may introduce image artifacts that will eventually correct out, and it may take some time for the camera to recover. The amount of time needed for recovery will depend on how long the camera was exposed to the sun. The longer the exposure, the longer the recovery time needed.

![Figure 2-3: Images facing sun from standard camera (left) and thermal camera (right)](image)
2.6 Restoring the Factory Settings

The camera comes configured from the factory with default settings for the IP address (192.168.250.116), the login passwords, and all of the other configuration parameters (stored in a file called server.ini). In some cases, it may be necessary to restore the settings of the camera to the original factory settings. If necessary, this can be accomplished by temporarily connecting a loopback device to the Ethernet port during initial power-up. Approximately 30 seconds after power is turned on, the loopback should be removed to allow the camera to finish booting up.

Note

The camera will not finish booting up while the loopback device is connected to the camera. The camera will display analog video, but the Nexus Server will not start until the loopback is removed from the camera.

At each power-up, the system transmits a packet and then checks to determine if that same packet has been received. Detection of the received packet indicates the camera has a custom loopback connector installed on its Ethernet interface. The detection of the loopback packet cues the camera to restore Factory Defaults (including the IP settings, user passwords, and configuration file), reverting to the same configuration and behavior as when the camera left the factory.

The custom loopback connector is described below.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>Tied to pin #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transmit +</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Transmit -</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Receive +</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>Unused</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>Receive -</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The RJ45 loopback termination ties pin 1 to pin 3, and pin 2 to pin 6. The other pins are not connected. This type of device is available commercially (the Smartronix Superlooper Ethernet Loopback Jack and Plug is one example), or it can be easily made with an RJ45 plug, a couple wires, and a crimp tool.

After the camera boots up, confirm the startup information is displayed on the analog monitor after approximately 90 seconds. For example:
Note, the order of the switches 1-8 is the reverse of the binary digits. For example, for address 1 the binary equivalent is 00000001 and the left-most switch (switch1) is on.

Address Conversion Table

<table>
<thead>
<tr>
<th>Address</th>
<th>Sw1</th>
<th>Sw 2</th>
<th>Sw 3</th>
<th>Sw4</th>
<th>Sw 5</th>
<th>Sw 6</th>
<th>Sw 7</th>
<th>Sw 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>2</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>255</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

The following table shows the binary equivalent for each decimal address between 1 and 255.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Decimal</th>
<th>Binary</th>
<th>Decimal</th>
<th>Binary</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00000001</td>
<td>65</td>
<td>01000001</td>
<td>129</td>
<td>10000001</td>
<td>193</td>
<td>11000001</td>
</tr>
<tr>
<td>2</td>
<td>00000010</td>
<td>66</td>
<td>01000010</td>
<td>130</td>
<td>10000010</td>
<td>194</td>
<td>11000010</td>
</tr>
<tr>
<td>3</td>
<td>00000011</td>
<td>67</td>
<td>01000011</td>
<td>131</td>
<td>10000011</td>
<td>195</td>
<td>11000011</td>
</tr>
<tr>
<td>4</td>
<td>00000100</td>
<td>68</td>
<td>01000100</td>
<td>132</td>
<td>10000100</td>
<td>196</td>
<td>11000100</td>
</tr>
<tr>
<td>5</td>
<td>00000101</td>
<td>69</td>
<td>01000101</td>
<td>133</td>
<td>10000101</td>
<td>197</td>
<td>11000101</td>
</tr>
<tr>
<td>6</td>
<td>00000110</td>
<td>70</td>
<td>01000110</td>
<td>134</td>
<td>10000110</td>
<td>198</td>
<td>11000110</td>
</tr>
<tr>
<td>7</td>
<td>00000111</td>
<td>71</td>
<td>01000111</td>
<td>135</td>
<td>10000111</td>
<td>199</td>
<td>11000111</td>
</tr>
<tr>
<td>8</td>
<td>00001000</td>
<td>72</td>
<td>01001000</td>
<td>136</td>
<td>10001000</td>
<td>200</td>
<td>11001000</td>
</tr>
<tr>
<td>9</td>
<td>00001001</td>
<td>73</td>
<td>01001001</td>
<td>137</td>
<td>10001001</td>
<td>201</td>
<td>11001001</td>
</tr>
<tr>
<td>10</td>
<td>00001010</td>
<td>74</td>
<td>01001010</td>
<td>138</td>
<td>10001010</td>
<td>202</td>
<td>11001010</td>
</tr>
<tr>
<td>11</td>
<td>00001011</td>
<td>75</td>
<td>01001011</td>
<td>139</td>
<td>10001011</td>
<td>203</td>
<td>11001011</td>
</tr>
<tr>
<td>12</td>
<td>00001100</td>
<td>76</td>
<td>01001100</td>
<td>140</td>
<td>10001100</td>
<td>204</td>
<td>11001100</td>
</tr>
<tr>
<td>13</td>
<td>00001101</td>
<td>77</td>
<td>01001101</td>
<td>141</td>
<td>10001101</td>
<td>205</td>
<td>11001101</td>
</tr>
<tr>
<td>14</td>
<td>00001110</td>
<td>78</td>
<td>01001110</td>
<td>142</td>
<td>10001110</td>
<td>206</td>
<td>11001110</td>
</tr>
<tr>
<td>15</td>
<td>00001111</td>
<td>79</td>
<td>01001111</td>
<td>143</td>
<td>10001111</td>
<td>207</td>
<td>11001111</td>
</tr>
<tr>
<td>16</td>
<td>00010000</td>
<td>80</td>
<td>01010000</td>
<td>144</td>
<td>10010000</td>
<td>208</td>
<td>11010000</td>
</tr>
<tr>
<td>17</td>
<td>00010001</td>
<td>81</td>
<td>01010001</td>
<td>145</td>
<td>10010001</td>
<td>209</td>
<td>11010001</td>
</tr>
<tr>
<td>18</td>
<td>00010010</td>
<td>82</td>
<td>01010010</td>
<td>146</td>
<td>10010010</td>
<td>210</td>
<td>11010010</td>
</tr>
<tr>
<td>19</td>
<td>00010011</td>
<td>83</td>
<td>01010011</td>
<td>147</td>
<td>10010011</td>
<td>211</td>
<td>11010011</td>
</tr>
<tr>
<td>20</td>
<td>00010100</td>
<td>84</td>
<td>01010100</td>
<td>148</td>
<td>10010100</td>
<td>212</td>
<td>11010100</td>
</tr>
<tr>
<td>21</td>
<td>00010101</td>
<td>85</td>
<td>01010101</td>
<td>149</td>
<td>10010101</td>
<td>213</td>
<td>11010101</td>
</tr>
<tr>
<td>22</td>
<td>00010110</td>
<td>86</td>
<td>01010110</td>
<td>150</td>
<td>10010110</td>
<td>214</td>
<td>11010110</td>
</tr>
<tr>
<td>23</td>
<td>00010111</td>
<td>87</td>
<td>01010111</td>
<td>151</td>
<td>10010111</td>
<td>215</td>
<td>11010111</td>
</tr>
<tr>
<td>24</td>
<td>00011000</td>
<td>88</td>
<td>01011000</td>
<td>152</td>
<td>10011000</td>
<td>216</td>
<td>11011000</td>
</tr>
<tr>
<td>25</td>
<td>00011001</td>
<td>89</td>
<td>01011001</td>
<td>153</td>
<td>10011001</td>
<td>217</td>
<td>11011001</td>
</tr>
<tr>
<td>26</td>
<td>00011010</td>
<td>90</td>
<td>01011010</td>
<td>154</td>
<td>10011010</td>
<td>218</td>
<td>11011010</td>
</tr>
<tr>
<td>Serial Address</td>
<td>Binary Conversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 00011011</td>
<td>01011011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 00011100</td>
<td>01011100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 00011101</td>
<td>01011101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 00011110</td>
<td>01011110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 00011111</td>
<td>01011111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 00100000</td>
<td>01100000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 00100001</td>
<td>01100001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34 00100010</td>
<td>01100010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 00100011</td>
<td>01100011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 00100100</td>
<td>01100100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 00100101</td>
<td>01100101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38 00100110</td>
<td>01100110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 00100111</td>
<td>01100111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 00101000</td>
<td>01101000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 00101001</td>
<td>01101001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42 00101010</td>
<td>01101010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 00101011</td>
<td>01101011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44 00101100</td>
<td>01101100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 00101101</td>
<td>01101101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46 00101110</td>
<td>01101110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47 00101111</td>
<td>01101111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 00110000</td>
<td>01110000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49 00110001</td>
<td>01110001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 00110010</td>
<td>01110010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 00110011</td>
<td>01110011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 00110100</td>
<td>01110100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 00110101</td>
<td>01110101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54 00110110</td>
<td>01110110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 00110111</td>
<td>01110111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56 00111000</td>
<td>01111000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57 00111001</td>
<td>01111001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58 00111010</td>
<td>01111010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59 00111011</td>
<td>01111011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 00111100</td>
<td>01111100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61 00111101</td>
<td>01111101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62 00111110</td>
<td>01111110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63 00111111</td>
<td>01111111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 01000000</td>
<td>10000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>