Using Auto Exposure in Blackfly S

Revised 2/9/2017

Applicable Products

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable Products</td>
<td>2</td>
</tr>
<tr>
<td>Application Note Description</td>
<td>2</td>
</tr>
<tr>
<td>What is Auto Exposure?</td>
<td>2</td>
</tr>
<tr>
<td>Why is Auto Exposure Important?</td>
<td>2</td>
</tr>
<tr>
<td>What is Target Grey Value (Exposure Value)?</td>
<td>2</td>
</tr>
<tr>
<td>How to Identify the Correct Exposure</td>
<td>2</td>
</tr>
<tr>
<td>How does Auto Exposure Work?</td>
<td>4</td>
</tr>
<tr>
<td>How is Auto Exposure Set?</td>
<td>5</td>
</tr>
<tr>
<td>Downloads and Support</td>
<td>11</td>
</tr>
<tr>
<td>Finding Information</td>
<td>11</td>
</tr>
<tr>
<td>Contacting Technical Support</td>
<td>11</td>
</tr>
<tr>
<td>Additional Resources</td>
<td>12</td>
</tr>
</tbody>
</table>
Applicable Products

Blackfly®S

Application Note Description

This document explains the auto exposure function of the Blackfly S camera and how to configure the control properties for the feature.

What is Auto Exposure?

Terminology

Blackfly S uses Spinnaker which is a GenICam-compliant SDK. Therefore, its terminology for auto exposure processes is different from the terms used in FlyCapture2 SDK (IIDC), although the functions are the same.

<table>
<thead>
<tr>
<th>Spinnaker (GenICam)</th>
<th>FlyCapture2 (IIDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Grey Value</td>
<td>Exposure Value</td>
</tr>
<tr>
<td>Exposure Time</td>
<td>Shutter</td>
</tr>
<tr>
<td>Gain</td>
<td>Gain</td>
</tr>
</tbody>
</table>

For more information on the naming convention and definitions, see Transitioning from FlyCapture2 to Spinnaker SDK.

Why is Auto Exposure Important?

Auto Exposure adjusts gain and exposure time to optimize the brightness of the image.

Auto Exposure implemented onboard a camera eliminates the CPU clock cycles needed to optimize exposure settings.

What is Target Grey Value (Exposure Value)?

Target Grey Value is a parameter that helps to compensate for various lighting conditions by adjusting brightness to achieve optimal imaging results. The value is linear and is a percentage of the maximum pixel value. In film photography and in various digital cameras, target grey value is called exposure value and is estimated based on the aperture size, f-stop, and shutter time. Target grey value is logarithmic and a unit change in exposure value doubles the exposure (how bright the image looks).

How to Identify the Correct Exposure

Image pixel intensity is generally represented with n bits. It is common to see 8-, 10-, or 16-bit pixel formats. Monochromatic images have one channel per pixel, and color images usually have three channels (R, G, B) per pixel. The image pixel values are binned in a histogram to display the pixel intensity spread of the image. This qualitative representation indicates when the image is underexposed, correctly exposed, or overexposed. The examples below show an underexposed, overexposed, and correctly exposed image, with the histogram of each image beside it. The histogram is used to determine when an image is at the optimal exposure.
Underexposed: The histogram skews left, meaning the sensor did not capture enough light to properly resolve the dark area.

Overexposed: The histogram skews right, meaning that some pixels are oversaturated and information is lost or clipped.

Correct exposure: The histogram mean is near the half pixel saturation value (128) and this image contains the least amount of lost data.
How does Auto Exposure Work?

There are three imaging parameters that affect an image’s exposure. Gain, exposure time (IIDC: shutter), and iris (not a standard GenICam feature). The steps involved in auto exposure are described below.

1. Capture Image
 Capture an image at a nominal starting point for exposure and gain.

2. Create Histogram and Compare Statistics
 Use histograms to compare the image statistics. The resulting histogram is compared against an optimal mean and variance to determine the optimal exposure. If the mean/variance doesn’t fall within the optimal range, gain or exposure is then adjusted by the camera. Below is a diagram of the feedback loop in determining the optimal exposure for an image.

You can set the optimal image mean automatically or define it with the Target Grey Value, which controls where the image histogram mean lies. Target grey value is a percentage of the pixel format’s maximum value. For example, for an 8-bit pixel format with a target grey value set at 50%, the gain and exposure adjust automatically to set the histogram mean at 128 before any non-linear functions, such as gamma or LUT, are applied to the image exposure.

When Target Grey Value is set to Automatic, the camera determines the best mean based on the image variance. In this mode, Gain, Exposure, and Target Grey Value can be configured to a lower and upper limits as well.

When Target Grey Values is set to Off, you may define the preferred mean. You may also define the mean by using exposure value (EV) compensation. This option works with Target Grey Values turned on or off.
EV compensation is a way to manually adjust the target grey value to accommodate particular situations where the lighting creates unusually dark or light subjects, such as bright sunlight or shadow. EV compensation uses numbers ranging from -3 to 3. Each unit increase doubles the brightness of the auto exposure algorithm.

3. Adjust Gain and Exposure Time

Adjust the imaging parameters of gain and exposure time when the image statistics do not match the target grey value.

Gain translates the sensor photon conversion output (electrons) into a digital value. The digital value is proportional to the gain set so the number of electrons needed for a unit bit change is proportional to the gain set. White balance is a gain compensation for the differences in the R, G, and B output of a sensor. Auto exposure takes into account the gain changes of white balance.

Exposure time (shutter) determines the amount of time the sensor collects photons and converts them into electrons. It controls how much light is collected by the sensor.

In addition to these features, two additional features, damping and priority control, can be enabled with auto exposure to provide supplementary control over the auto exposure algorithm. The following section on API commands provides additional details.

How is Auto Exposure Set?

The SpinView application and Spinnaker API provide a variety of options for the user to configure auto exposure. For more information on these features, see the Blackfly S camera reference.

Using SpinView to Enable Automatic Exposure

To enable Automatic Exposure using SpinView:

1. Open SpinView and navigate to the Settings tab.
2. Set Exposure Auto to Continuous.
3. Set Gain Auto to Continuous.

You only need to set one of either Gain Auto or Exposure Auto to Continuous. The other can be a fixed value.
Other optional features that you can set in SpinView are shown below. To access these controls, click on the Features tab and scroll to Auto Algorithm Control. More details on the functions are included in the API controls section.

![Auto Algorithm Control Dialog](image)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI Selector</td>
<td>Auto White Balance</td>
</tr>
<tr>
<td>ROI Enable</td>
<td>Off</td>
</tr>
<tr>
<td>ROI Offset X</td>
<td>N/A</td>
</tr>
<tr>
<td>ROI Offset Y</td>
<td>N/A</td>
</tr>
<tr>
<td>ROI Width</td>
<td>N/A</td>
</tr>
<tr>
<td>ROI Height</td>
<td>N/A</td>
</tr>
<tr>
<td>White Balance Auto Profile</td>
<td>Indoor</td>
</tr>
<tr>
<td>White Balance Auto Lower Limit</td>
<td>0.5</td>
</tr>
<tr>
<td>White Balance Auto Upper Limit</td>
<td>4</td>
</tr>
<tr>
<td>White Balance Auto Damping</td>
<td>0.25</td>
</tr>
<tr>
<td>Target Grey Value Auto</td>
<td>Continuous</td>
</tr>
<tr>
<td>Target Grey Value</td>
<td>0</td>
</tr>
<tr>
<td>Lighting Mode</td>
<td>Normal</td>
</tr>
<tr>
<td>Metering Mode</td>
<td>Average</td>
</tr>
<tr>
<td>Exposure Time Lower Limit</td>
<td>1000 us</td>
</tr>
<tr>
<td>Exposure Time Upper Limit</td>
<td>15000 us</td>
</tr>
<tr>
<td>Gain Lower Limit</td>
<td>0 dB</td>
</tr>
<tr>
<td>Gain Upper Limit</td>
<td>18 dB</td>
</tr>
<tr>
<td>Target Grey Value Lower Limit</td>
<td>3.91 %</td>
</tr>
<tr>
<td>Target Grey Value Upper Limit</td>
<td>53.84 %</td>
</tr>
<tr>
<td>RV Compensation</td>
<td>0</td>
</tr>
<tr>
<td>Auto Exposure Damping</td>
<td>0.5</td>
</tr>
<tr>
<td>Auto Exposure Control</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

Auto Algorithm Control

Category that contains all auto algorithm related features.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Access</td>
<td>View files</td>
</tr>
<tr>
<td>Information</td>
<td>Display info</td>
</tr>
<tr>
<td>Settings</td>
<td>Adjust settings</td>
</tr>
<tr>
<td>Image Format</td>
<td>Change image format</td>
</tr>
<tr>
<td>Processing</td>
<td>Process images</td>
</tr>
<tr>
<td>GPIO</td>
<td>Configure GPIO</td>
</tr>
<tr>
<td>Sequencer</td>
<td>Run sequencer</td>
</tr>
<tr>
<td>Features</td>
<td>Additional features</td>
</tr>
</tbody>
</table>
Using the Spinnaker API to Enable Automatic Exposure Features

Here are the C++ examples for enabling the automatic exposure features using the Spinnaker API, and descriptions of the features. Access these options from the Settings Tab.

Automatic Exposure Time and **Gain Auto** selects automatic mode.

```cpp
//Setting Exposure time mode to Automatic
CEnumerationPtr ptrExposureAuto = nodeMap.GetNode("ExposureAuto");
CEnumEntryPtr ptrExposureAutoCts = ptrExposureAuto->GetEntryByName("Continuous");
ptrExposureAuto->SetIntValue(ptrExposureAutoCts->GetValue());

//Setting gain mode to automatic
CEnumerationPtr ptrGainAuto = nodeMap.GetNode("GainAuto");
CEnumEntryPtr ptrGainAutoCts = ptrGainAuto->GetEntryByName("Continuous");
ptrGainAuto->SetIntValue(ptrGainAutoCts->GetValue());
```

Region of interest (ROI) can be applied to the auto exposure features. This AE ROI can be equal to or smaller than the area of the captured ROI.

```cpp
//light metering: Automatic Exposure ROI
//enabling ROI for white balance
CBooleanPtr ptrAasRoiEnable = nodeMap.GetNode("AasRoiEnable");
ptrAasRoiEnable->SetValue(1);
CEnumerationPtr ptrAutoAlgorithmSelector = nodeMap.GetNode("AutoAlgorithmSelector");
CEnumEntryPtr ptrAutoAlgorithmSelectorAWB = ptrAutoAlgorithmSelector->GetEntryByName("AutoWhiteBalance");
ptrAutoAlgorithmSelector->SetIntValue(ptrAutoAlgorithmSelectorAWB->GetValue());

//Setting ROI size and offset
CIntPtr ptrAasRoiHeight = nodemap.GetNode("AasRoiHeight");
ptrAasRoiHeight->SetValue([insert ROI height]);
CIntPtr ptrAasRoiWidth = nodemap.GetNode("AasRoiWidth");
ptrAasRoiWidth->SetValue([insert ROI width]);
CIntPtr ptrAasRoiOffsetX = nodemap.GetNode("AasRoiOffsetX");
ptrAasRoiOffsetX->SetValue([insert X offset]);
CIntPtr ptrAasRoiOffsetY = nodemap.GetNode("AasRoiOffsetY");
ptrAasRoiOffsetY->SetValue([insert Y offset]);
```

Target Grey Value set to automatic (continuous) allows camera to determine the best mean based on the image variance.

```cpp
//Automatic Target Grey Value
CEnumerationPtr ptrAutoXTargetGreyValueAuto = nodeMap.GetNode("AutoExposureTargetGreyValueAuto");
CEnumEntryPtr ptrAutoXTargetGreyValueAutoCts = ptrAutoXTargetGreyValueAuto->GetEntryByName("Continuous");
ptrAutoXTargetGreyValueAuto->SetValue(ptrAutoXTargetGreyValueAutoCts->GetValue());
```
Lighting Mode adjusts exposure value to accommodate features in an image histogram when lighting is non-uniform across an image. The standard setting is Normal. The two other options are backlight compensation and frontlight compensation:

Backlight Compensation

Use backlight compensation mode when a strong light is coming from behind the object. In this situation, the auto exposure algorithm underexposes the object. Implementing backlight compensation adjusts the imaging parameters to properly expose the image, regardless of the location of the object relative to the position of the camera and lighting.

```cpp
//lighting mode: Backlight Compensation
CEnumerationPtr ptrAutoXLightingMode = nodeMap.GetNode("AutoExposureLightingMode");
CEnumEntryPtr ptrAutoXLightingModeBacklight = ptrAutoXLightingMode->GetEntryByName("Backlight");
ptrAutoXLightingMode->SetIntValue(ptrAutoXLightingModeBacklight->GetValue());
```

Frontlight Compensation

The frontlight compensation mode is used when a strong light is shining in the front of the object while the background is dark. In such conditions, the auto exposure algorithm overexposes the object. Frontlight compensation adjusts the imaging parameters to properly expose the image, regardless of the locations of the object relative to the position of the camera and the lighting.

```cpp
//lighting mode: Frontlight Compensation
CEnumerationPtr ptrAutoXLightingMode = nodeMap.GetNode("AutoExposureLightingMode");
CEnumEntryPtr ptrAutoXLightingModeFrontlight = ptrAutoXLightingMode->GetEntryByName("Frontlight");
ptrAutoXLightingMode->SetIntValue(ptrAutoXLightingModeFrontlight->GetValue());
```

Metering Mode determines how much of the image is used to calculate the image exposure. Metering Mode can only be selected if Lighting Mode is set to Normal. The options include Spot Metering and Partial metering.

Spot Metering

This mode measures the light from a small area (about 3%) in the center of the scene while the rest of the scene is ignored. Use this mode when the scene has a high contrast and the object of interest is relatively small.

```cpp
//light metering: Spot Metering
CEnumerationPtr ptrAutoXMeteringMode = nodeMap.GetNode("AutoExposureMeteringMode");
CEnumEntryPtr ptrAutoXMeteringModeSpot = ptrAutoXMeteringMode->GetEntryByName("Spot");
ptrAutoXMeteringMode->SetIntValue(ptrAutoXMeteringModeSpot->GetValue());
```
Partial metering

This mode measures the light from a larger area (about 11%) in the center of the scene. Use this mode when very dark or bright regions appear at the edge of the frame.

```
//light metering: Partial Metering
CEnumerationPtr ptrAutoXMeteringMode = nodeMap.GetNode
("AutoExposureMeteringMode");
CEnumEntryPtr ptrAutoXMeteringModePartial = ptrAutoXMeteringMode->GetEntryByName
("Partial");
ptrAutoXMeteringMode->SetIntValue(ptrAutoXMeteringModePartial->GetValue());
```

Target Grey Value Lower Limit and Target Grey Upper Limit allow you to set various auto exposure parameter limits.

```
//Automatic Target Grey Value limits
CFloatPtr ptrAutoXGreyValueLowerLimit = nodeMap.GetNode
("AutoExposureGreyValueLowerLimit");
ptrAutoXGreyValueLowerLimit->SetValue([insert lower limit]);
CFloatPtr ptrAutoXGreyValueUpperLimit = nodeMap.GetNode
("AutoExposureGreyValueUpperLimit");
ptrAutoXGreyValueUpperLimit->SetValue([insert upper limit]);

//Automatic Gain limits
CFloatPtr ptrAutoXGainLowerLimit = nodeMap.GetNode("AutoExposureGainLowerLimit");
ptrAutoXGainValueLowerLimit->SetValue([insert lower limit]);
CFloatPtr ptrAutoXGainValueUpperLimit = nodeMap.GetNode
("AutoExposureGainUpperLimit");
ptrAutoXGainValueUpperLimit->SetValue([insert upper limit]);

//Automatic Exposure Time limits
CFloatPtr ptrAutoXExposureTimeLowerLimit = nodeMap.GetNode
("AutoExposureExposureTimeLowerLimit");
ptrAutoXExposureTimeLowerLimit->SetValue([insert lower limit]);
CFloatPtr ptrAutoXExposureTimeUpperLimit = nodeMap.GetNode
("AutoExposureExposureTimeUpperLimit");
ptrAutoXExposureTimeUpperLimit->SetValue([insert upper limit]);
```
Auto Exposure Control Priority is used to select whether to adjust gain or exposure first.

Gain Priority Mode

Use this mode to minimize noise. When Gain Priority Mode is selected, the camera fixes the gain to 0 dB, and the exposure is adjusted according to the target grey level. If the maximum exposure is reached before the target grey level is achieved, the gain starts to change until the Target grey level is achieved.

```cpp
//gain priority
CEnumerationPtr ptrAutoXControlPriority = nodeMap.GetNode("AutoExposureControlPriority");
CEnumEntryPtr ptrAutoXControlPriorityGain = ptrAutoXControlPriority->GetEntryByName("GainPriorityMode");
ptrAutoControlPriority->SetIntValue(ptrAutoXControlPriorityGain->GetValue());
```

Exposure Priority Mode

Use this mode to capture fast motion. When it is selected, the camera sets exposure to a default small value (5 ms) and the gain is adjusted accordingly to the target grey value. If the maximum gain is reached before the target grey level is achieved, the exposure changes until the target grey level is achieved.

```cpp
//gain priority
CEnumerationPtr ptrAutoXControlPriority = nodeMap.GetNode("AutoExposureControlPriority");
CEnumEntryPtr ptrAutoXControlExposureTimePriority = ptrAutoXControlPriority->GetEntryByName("ExposureTimePriority");
ptrAutoControlPriority->SetIntValue(ptrAutoXControlExposureTimePriority->GetValue());
```
Downloads and Support

FLIR endeavors to provide the highest level of technical support possible to our customers. Most support resources can be accessed through the Support section of our website.

The first step in accessing our technical support resources is to obtain a Customer Login Account. This requires a valid name and email address. To apply for a Customer Login Account go to our Downloads page.

Customers with a Customer Login Account can access the latest software and firmware for their cameras from our website. We encourage our customers to keep their software and firmware up-to-date by downloading and installing the latest versions.

Finding Information

Spinnaker SDK—The Spinnaker SDK provides API examples and the SpinView camera evaluation application. Available from our Downloads page.

API Documentation—The installation of the Spinnaker SDK comes with API references for C++, C#, and C code. A Programmer’s Guide is included in each of the references. Available from:

- Start Menu→All Programs→Point Grey Spinnaker SDK→Documentation
- The SpinView application Help menu

Getting Started with SpinView—A quick guide to using the SpinView camera evaluation application provided in the Spinnaker SDK. Available from:

- Start Menu→All Programs→Point Grey Spinnaker SDK→Documentation
- The SpinView application Help menu
- Camera Reference zip package

Knowledge Base—A database of articles and application notes with answers to common questions as well as articles and tutorials about hardware and software systems. Available from our Knowledge Base.

Learning Center—Our Learning Center contains links to many resources including videos, case studies, popular topics, other application notes, and information on sensor technology.

Contacting Technical Support

Before contacting Technical Support, have you:

1. Read the product documentation?
2. Searched the Knowledge Base?
3. Downloaded and installed the latest version of software and/or firmware?

If you have done all the above and still can’t find an answer to your question, contact our Technical Support team.
Additional Resources

GenICam—A programming interface for cameras and devices. More information available on the EMVA.org website.

USB3 Vision—A vision standard for the USB 3.1 interface that uses GenICam. More information available on the AIA Vision Online website.